
Charles Umiker CareerFoundry Case Study

Meet App


A Test of Tests 

Meet App is a Progressive, Serverless Web App built with React. It allows 
the user to see events happening in cities around the world and add them 
to the user’s personal calendar. 


Meet App is a project I completed in my Full Stack Immersion course at 
CareerFoundry. It was my first exposure to Test Driven Development (TDD) and 
allowed me to hone my burgeoning React skills. It was also my first time using 
AWS as the backend of an app, and my first time building a Progressive Web App 
(PWA).


1

Data Visualization by Recharts



Charles Umiker CareerFoundry Case Study

I was the lead developer on all aspects of the project, with the invaluable support 
of my mentor Ted Walther and tutor Jay Quach. This project took about five 
weeks. My daughter had just been born the month prior, so progress was slower 
than normal. Despite this, I was able to get it done and learned a great deal, while 
also keeping the little one fed and happy.


The Process

Building the app involved many steps, which I will touch on briefly here. This will be followed by a more in 
depth discussion of some of the more interesting problems I encountered, in the “Project Highlights” 
section. 

1. Write User Stories, using the Given-When-Then syntax, to map out the app’s 
features.


2. Set up Amazon Web Service (AWS) to act as a serverless backend for the 
app. This allows the user to be authorized and authenticated to access the 
Google Calendar API.


3. Write Unit and Integration tests for the app’s components with Jest and 
Enzyme, letting the tests drive the generation of the app’s code (see the next 
section for more details).


4. Write Acceptance tests with Cucumber and an End-to-End test with 
Puppeteer. Run these tests to see if app functions properly.


5. Set up Atatus to monitor app performance for Continuous Integration and 
Delivery. Test app on friends and family and analyze performance stats.


6. Implement an alert function using JavaScript Object Oriented Programming 
(OOP).


7. Convert App into a Progressive Web App, using Lighthouse on Chrome 
DevTools to evaluate. Enable service worker and caching for offline use and 
customize “manifest.json” file with new app icon.


8. Add data visualization with Recharts. Generate a pie chart of the different 
event topics and a scatter chart showing event locations.


2



Charles Umiker CareerFoundry Case Study

Project Highlights

Meet App was a complex project with many moving parts, and I would like to 
highlight three aspects that I found most illuminating and I hope will be interesting 
to the reader.


How I created Unit and Integration tests

This was my first time doing Unit and Integration tests, and, well, it was a doozy. 
The idea of Test Driven Development (TDD) is to 


1. Figure out what you want the app to do,  

2. Write tests to see whether it does those things  

3. Write the code  

In essence, you write the tests first, and then write the 
program. This has its advantages, but for me, the 
young developer, it felt a bit like dancing in the dark.


One challenge is that when you’re writing tests for the front end, you are testing 
features that depend on user behavior, like pushing a button or entering text. 
However, you are testing these features with a computer program, which does not 
behave like a human. For example, computers are sometimes just too fast, so the 
test software might push all the buttons and fill in all the text fields before the site 
gets a chance to respond properly. This creates all sorts of race conditions where 
things are basically happening too fast and happen out of the intended order. To 
combat this, you have to use commands like “async await” to make the computer 
program chill out and give the site a few milliseconds to do its thing before 
proceeding to the next step.


3



Charles Umiker CareerFoundry Case Study

Above is an example of a test I wrote that solved some of these issues. This one 
is testing whether the app knows when the user has typed a number of events 
into the number field on the site. To do this, I generate a random number and tell 
the program to simulate entering the number into the “Number of Events” field on 
the site. At this point, I use the “await” command to make sure the site has the 
time to respond. Once we’re all set, the test asks if the Meet App has the same 
number saved in its “state.” If so, we pass!


I like to use a random number generator in my tests instead of just picking a 
number myself. That way, every time I run the test I’m making sure that it doesn’t 
just work for some numbers and not for others. If there is a problem, it should 
eventually show up if I’m using the random number generator. It reflects the 
randomness of the world.

You also may notice a reference to MockData in the code. When we run tests 
involving data from an external source, we usually use “fake” data that we 
generate instead of constantly going to the external source for more data every 
time we test. I like to use bigger chunks of mock data for my tests to be sure that 
the test is dealing with a diverse range of information.


How I got my app to run at Super Speed

When I coded the app according to the guidelines 
of the course, it worked. As the user, I could 
select my city and number of events I wanted to 
see. However, the process was SUPER SLOW! 
The reason was that every time I entered or 
deleted even a single character in the “Number of 
Events” box, the “onChange” function was calling 
the external API to check for updates. So if I 
wanted to type the number “25” in the box, I 
would have to type “2”, wait about 2 seconds, type “5”, and then wait again. 

4

	 Creative Commons License



Charles Umiker CareerFoundry Case Study

In order to fix this, I rethought the flow of the entire app. Instead of constantly 
changing the list of events in the App state and updating every time the user 
moved a muscle, the app would save all the events just once, when the app first 
loaded. After that, the child components, “Number of Events” and “City Search” 
would handle filtering the events to fit the user’s specification, using JavaScript 
methods like “filter” and “slice”. All the while, the events would sit in the parent 
component’s state unchanged. 

To my considerable delight and relief, this made the app lightning fast! Because 
the app was basically operating offline after the initial load, anything the user 
wanted to do could be accomplished in a split second. Of course, a possible 
disadvantage is that the user is no longer getting updated event data every few 
seconds. However, since the nature of the data is not particularly time sensitive 
(at least not on a minute-by-minute basis) and the Google Calendar did not seem 
to be updated more than once a day at most, it seemed to me that speed was 
preferable to constant updates. After all, if you, the user, wanted “fresh out of the 
oven” event info, you could refresh the page at any time.


5

The updateEvents function was key to putting this app in the fast lane.

The updateEvents function is passed to the CitySearch and NumberofEvents components as a prop, so 
those components can change the app’s state.

When the events are passed to the EventList to be displayed, they are edited down to the selected 
number of events with the “slice” method. However, the complete list of events is left untouched in the 
App state so that the user can retrieve them again without going back to the API.



Charles Umiker CareerFoundry Case Study

And one fun little feature

I always like to challenge myself to add a little something of my own that isn’t 
required but is kind of fun and hopefully useful. In the app the user gets to pick 
how many events are displayed. However, if the user chooses 30 events and 
“London” but London only has 22 events scheduled, the user only sees 22 
events. I wanted to make this clear with an alert that appears at the end of the list 
of events. 

Depending on the number of events the user has chosen, it either reads 
something like:

OR (if the user has chosen to see fewer than 22 events)

This was achieved with a simple ternary expression. Nothing fancy, but  I thought 
it added a little clarity to the user experience and encouraged the user to explore 
the app a little more.


In Summary…

I found this to be one of the more challenging projects, because the Test Driven 
Development process shook up my understanding and made me turn everything I 
knew upside down. I was happy to get through to the other side and implement 
some features of my own into the app. With more time, I would like to punch up 
the look of the app and find ways to make it even more efficient.


6

Here’s how I set up the end-of-list alert



Charles Umiker CareerFoundry Case Study

Technologies Used

• React

• Google Calendar API

• AWS Lambda

• Jest (testing)

• Enzyme (testing)

• Cucumber (testing)

• Puppeteer (testing)

• Atatus (performance evaluation)

• Lighthouse (Chrome DevTools)

• Recharts (data visualization)


7


	The Process
	Project Highlights
	In Summary…

